Height Bounds on Zeros of Quadratic Forms Over Q-bar

نویسنده

  • Lenny Fukshansky
چکیده

In this paper we establish three results on small-height zeros of quadratic polynomials over Q. For a single quadratic form in N ≥ 2 variables on a subspace of Q , we prove an upper bound on the height of a smallest nontrivial zero outside of an algebraic set under the assumption that such a zero exists. For a system of k quadratic forms on an L-dimensional subspace of Q , N ≥ L ≥ k(k+1) 2 + 1, we prove existence of a nontrivial simultaneous small-height zero. For a system of one or two inhomogeneous quadratic and m linear polynomials in N ≥ m + 4 variables, we obtain upper bounds on the height of a smallest simultaneous zero, if such a zero exists. Our investigation extends previous results on small zeros of quadratic forms, including Cassels’ theorem and its various generalizations and contributes to the literature of so-called “absolute” Diophantine results with respect to height. All bounds on height are explicit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Zeros of Quadratic Forms over the Algebraic Closure of Q

Let N ≥ 2 be an integer, F a quadratic form in N variables over Q, and Z ⊆ Q N an L-dimensional subspace, 1 ≤ L ≤ N . We prove the existence of a small-height maximal totally isotropic subspace of the bilinear space (Z, F ). This provides an analogue over Q of a well-known theorem of Vaaler proved over number fields. We use our result to prove an effective version of Witt decomposition for a bi...

متن کامل

Small Zeros of Quadratic Forms over Q

Let N ≥ 2 be an integer, F a quadratic form in N variables over Q, and Z ⊆ Q N an L-dimensional subspace, 1 ≤ L ≤ N . We prove the existence of a small-height maximal totally isotropic subspace of the bilinear space (Z, F ). This provides an analogue over Q of a well-known theorem of Vaaler proved over number fields. We use our result to prove an effective version of Witt decomposition for a bi...

متن کامل

Small Zeros of Quadratic Forms

Let N ≥ 2 be an integer, F a quadratic form in N variables over Q, and Z ⊆ Q N an L-dimensional subspace, 1 ≤ L ≤ N . We prove the existence of a small-height maximal totally isotropic subspace of the bilinear space (Z, F ). This provides an analogue over Q of a wellknown theorem of Vaaler proved over number fields. We use our result to prove an effective version of Witt decomposition for a bil...

متن کامل

Heights and quadratic forms: Cassels’ theorem and its generalizations

In this survey paper, we discuss the classical Cassels’ theorem on existence of small-height zeros of quadratic forms over Q and its many extensions, to different fields and rings, as well as to more general situations, such as existence of totally isotropic small-height subspaces. We also discuss related recent results on effective structural theorems for quadratic spaces, as well as Cassels’-...

متن کامل

Totally Isotropic Subspaces of Small Height in Quadratic Spaces

Let K be a global field or Q, F a nonzero quadratic form on KN , N ≥ 2, and V a subspace of KN . We prove the existence of an infinite collection of finite families of small-height maximal totally isotropic subspaces of (V, F ) such that each such family spans V as a K-vector space. This result generalizes and extends a well known theorem of J. Vaaler [16] and further contributes to the effecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016